Trapped Exciton and Large Birefringence in Cl$_2$–NDI Revealed by Optical Spectroscopy

Marko Pinterić,† Seulki Roh,*† Ece Uykur, Nis Hauke Hansen, Jens Pflaum, Matthias Stolte, Frank Württhner, and Martin Dressel

ABSTRACT: The n-type organic semiconductor, β-phase single crystalline dichloro naphthalene diimide, Cl$_2$–NDI, is investigated in a broad frequency range via optical spectroscopy. The temperature-dependent absorbance spectra reveal the appearance of new molecular vibration modes; several of them exhibit a temperature-dependent absorbance spectra reveal the appearance in a broad frequency range via optical spectroscopy. The Le excitons and molecular vibrations or trapping by disorder induced optical as well as optoelectronic applications.1

INTRODUCTION

Aggregated organic materials provide rich optoelectronic phenomena such as pleochroism, superradiance, and photovoltaic effects that can be used in a large variety of various optical as well as optoelectronic applications.1–5 Consequently, numerous studies have been conducted in this regard. In aggregated molecular systems the structure composed of π-stacked conjugated molecules significantly influences the material properties, including the electronic and the optical response. Thus, it is important to investigate the relation between the structure and the electronic properties in order to reach an understanding of the interrelating mechanisms for further utilizations of these systems. This close relation between structure and optoelectronic properties of π-conjugated organics has been successfully explained by the molecular exciton model.4–8 Due to the dipolar-coupling between molecules, the energy of the excited monomer state splits into two levels, one of higher and one of lower energy compared to the monomer energy level. Depending on their stacking pattern, the aggregations can be divided into two types, J- and H-aggregates; the classification is based on the slipping angle, Θ, between two adjacent molecules. In the case of π-stacking, one obtains J-aggregates for Θ < 54.7° and H-aggregates for Θ > 54.7°, as depicted in Figure 1a. In H-aggregates, the molecules are arranged in a face-to-face manner. In H-aggregates, optical excitations to the lower energy level are forbidden; thus, only transitions to the higher energy state can be observed. This results in a hypsochromic shift (blue shift), denoted as the H-band in the absorption spectra. Conversely, if the molecules are aligned in a head-to-tail way, the splitting of the monomer energy occurs in a similar way; however, in this case only excitations to the lower energy band are allowed, leading to a bathochromic shift (red shift), the so-called J-band (Figure 1b).

In this sense, a prototypical n-type organic semiconductor, N,N’-bis(heptafluorobutyl)-2,6-dichloro-1,4,5,8-naphthalene tetracarboxylic diimide (abbreviated Cl$_2$–NDI) (Figure 1c) serves as a good platform to study the interrelation between packing and the resulting optical characteristics since it crystallizes in two different structural phases, α and β, depending on its stacking fashion, and its electronic properties vary greatly with the corresponding π-stacking.9–11 The α-phase belongs to a monoclinic space group $P2_1/c$ and has a herringbone stacking motif, where the angle between the NDI skeleton and the fluoroalkyl chain is 129.7°. In this herringbone packing, the π–π stacking distance is 3.27 Å with a slipping angle of 62° with two molecules in a unit cell (Figure 1e,g). The oblique alignments in the herringbone packing yield both J- and H-bands in the optical spectra, i.e., the Darylov splitting as illustrated in Figure 1b. The J-band
conditions up to 8.6 and 3.5 cm2 V$^{-1}$ s$^{-1}$ in the α- and β-phase, respectively, where the significant variation between these values is an indication for the different electronic structure of the two polymorphs.9,11

Here, we report the optical properties of single crystalline β-phase Cl$_2$−NDI via optical transmittance experiments in a wide frequency range from the far-infrared to visible. Optical spectroscopy is sensitive to both the molecular vibration and the electronic state; thus, one can access the interrelation between the electronic and vibrational excitations and its dependence of the crystalline packing. Upon cooling, we observed splittings and anomalous red shifts in the molecular vibrational modes at low frequencies and a splitting of the excitonic J-band at high frequencies. These two observations together imply that excitons are localized via coupling with the intermolecular vibrations, i.e., phonon modes, or disorder driven Lévy state. Additionally, polarization-dependent transmittance spectra exhibit polarization beats, manifesting a large birefringence over a wide spectral range. Our results provide insight into the correlation between the lattice vibration and the excitonic state in the aggregated organics; furthermore, we unveil the unique optoelectronic properties in this system.

METHODS

Single crystalline Cl$_2$−NDI samples in the β-phase are prepared from purified Cl$_2$−NDI by physical vapor transport method at 235 °C in ambient atmosphere. For the optical measurements, a Bruker Vertex 80v FTIR spectrometer attached to a Hyperion microscope was employed to record the transmittance of a thin (~15 μm) single crystal of Cl$_2$−NDI in a wide frequency range from 100 to 25 000 cm$^{-1}$. The temperature was controlled by an Oxford Microstat, and the optical measurements were performed at a typical cooling rate of 1 K min$^{-1}$. The lowest temperature of approximately 10 K was reached about 10 h after the start of the cooling cycle. Suitable linear polarizers were used for the polarization-dependent measurements. The absorbance, $\alpha(\omega)d$, was calculated by using the Beer–Lambert law, $\alpha(\omega)d = -\ln(T)$, where α is the absorption coefficient, d is the thickness of the sample, and T is the measured transmittance normalized to the vacuum transmittance, as the reflectivity of the sample is negligibly small.

RESULTS AND DISCUSSION

Before we focus on electronic excitations in the visible range of the spectrum, let us briefly present the vibrational features in the infrared region and discuss the implications for the structure.

Vibrational Modes and Structural Instability. The temperature evolution of the infrared-active vibrational modes located at low frequencies is displayed in Figure 2a. Due to a large number of atoms in a unit cell, numerous modes are present in the optical spectra. With decreasing temperature, most of the features exhibit a sharpening and blue shift by a reduced lattice anharmonicity. However, some irregular temperature dependence was observed in several modes. For closer inspection, we plotted representative modes in larger scales in Figure 2b–d. In Figure 2b, three modes are marked by vertical dashed gray lines and labeled by A, B, and C. The A-mode develops as a shoulder below $T = 160$ K and eventually splits as an individual mode; the original resonance remains at the same frequency. Meanwhile, two features (B

Figure 1. Crystal structure of Cl$_2$−NDI (dichloro naphthalene diimide) and optical excitations in aggregates. (a) Electronic levels for J- and H-aggregates and corresponding optical excitations for the α- and β-phases. For the α-phase, both excitations to E$'$ and E$''$ are allowed, due to the oblique stacking. (b) Absorbance spectra for J- and H-bands with respect to the monomer band. (c) Structure of a single Cl$_2$−NDI molecule. The gray, magenta, blue, yellow, and orange atoms represent C, N, Cl, F, and H, respectively. Parts d and f, and parts e and g, show aggregated structures of Cl$_2$−NDI in the β- and α-phases, respectively. The directions of molecular dipole moments are depicted in color gradient arrows.
The curves are vertically shifted for clarity.

parameter. Usually aggregates.

important role on the optical properties of these molecular composed of electronic and vibronic orders and play an

thorough analysis and interpretation, because they are assigned to strong excitonic absorption. They deserve a

cooling. Hence, the unusual red shift observed for the

symmetry, i.e., a structural transition.

vibrational modes is a direct consequence of a reduced lattice

of the pronounced red shift, the splitting of the molecular

band at 24 400 cm$^{-1}$ in the absorption spectrum as displayed in Figure 3a. The main

feature shows an anomalous red shift upon cooling, which implies a structural instability in this system. Also the

modes H and I in Figure 2d split into two individual oscillations where both loose their spectral weight considerably.

In the quasiharmonic model of lattice vibrations, the oscillation frequency, ω, depends on the temperature due to thermally induced changes in volume, V. The relation between the variation in volume and vibrational frequency of the mode can be written as $\Delta\omega / \omega = -\gamma \Delta V / V$, where γ is the Gruneisen parameter. Usually γ is positive, yielding a blue shift of ω upon cooling. Hence, the unusual red shift observed for the G-mode can be interpreted as a strong anharmonicity near a structural instability similar to reports in other systems. Along with the pronounced red shift, the splitting of the molecular vibrational modes is a direct consequence of a reduced lattice symmetry, i.e., a structural transition.

Electronic Properties. In the visible energy range above 20 000 cm$^{-1}$, pronounced electronic excitations are observed due to intermolecular interactions and the molecular packing arrangement (in the current case, within the crystal unit cell) are strongly interdependent and that both steer collective excitations, such as excitons, and their dynamics in the molecular solid state.

Once two identical molecules come in close proximity to each other, the transition dipolar moments of these molecules start to interact with each other creating an excitonic coupling. The relative orientation of these molecules causes the splitting of the energy levels of the individual molecules, as demonstrated in Figure 1a.

In the case of a face-to-face alignment (H-aggregate) the parallel dipoles repel each other and form a state of higher energy, which is characterized by a strong dipole moment, i.e., strong absorption. In contrast, the antiparallel dipoles of an H-type aggregate attract each other, which lowers the energy of the resulting state and cancels its transition dipole leading to a weaker absorption. This results in a net blue shift of the energy levels of the uncoupled monomers. The other possible arrangement is the head-to-tail arrangement that creates an opposite effect causing a net red shift relative to the energy level of the isolated monomers. Molecular aggregates causing a red shift of the bands are commonly referred as the J-aggregate, whereas aggregates leading to a blue shift of the bands are the H-aggregates. The relative energy bands of these different aggregates with respect to their uncoupled monomer arrangement are shown in Figure 1b. For the intermediate orientations, termed oblique—such as in case of the herringbone packing of the α-phase in Cl$_2$-NDI—the energy shift depends on both the intermolecular distance and the angles between the dipoles. Such excitonic coupling between more than two molecules allows the absorbance spectrum to contain a mixture of J- and H-type optical properties (see

Figure 2. (a) Overview of the absorbance spectra of vibrational modes in Cl$_2$-NDI in the fingerprint range for various temperatures as indicated. (b–d) Magnified views of particular vibrational features. The selected modes are labeled from A to I and marked with vertical dashed gray lines. The curves are vertically shifted for clarity.
The black line represents the monomer absorption taken from ref 9. The axes are plotted in lower panel of part b for selected temperatures. The black solid curve in the lower panel of Figure 3b. Considering with respect to the monomer in solution (depicted by the a and b-axes at T = 10 and 300 K are displayed. The two modes observed are more pronounced along the b-direction; nevertheless, if we normalize the absorbance by the absorbance spectra measured at 300 K, one can see that both polarizations show the same trend. In fact, this shoulder splits into two separate modes rendering a steplike feature at low temperatures. The origin of this shoulder-peak and its split evades a complete understanding at this point. We suggest that it signals trapped exciton states. In particular, either exciton—phonon coupling induced exciton polaron or disorder driven Lévy states which have been reported previously.5,7,24−30

Exciton Polaron. In aggregates, excitons are delocalized; thus, several molecules are linked forming a coherent excitonic state (J-band in this situation). If we now consider the exciton—phonon coupling—in our case, to the intermolecular vibrations—excitons can become localized. This localization causes the atomic displacement in the vicinity of the localized exciton to decrease the potential.7,51,52 Simultaneously, the reduced potential tends to localize the exciton even further; in other words the exciton and phonon couple to each other forming a trapped state, i.e., a polaron. If the coupling between exciton and phonon is strong enough, the exciton can be trapped due to the potential deformed by itself, creating a self-trapped state.7,27,32,53

Polarons have been observed previously in other materials, and depending on the radius of the polarons they are divided into large and small polarons.34−38 The self-trapped case corresponds to the small polaron, with a radius of about a few nm and with a characteristic energy scale of a few eV, i.e., significantly larger than the corresponding transfer integral. The self-trapped exciton state has lower energy than a delocalized exciton since the deformed lattice favors the localized state. Due to this coupling between the phonon and exciton, the self-trapped state is located in a different position of momentum space than the ground state. Therefore, optical transitions require assistance from the phonon absorption to be detected in the absorption measurement (Franck−Condon principle). For this reason, the detected signal usually is small compared to the original absorption signal. The lattice distortion features a shift or a splitting in the phonon spectra, which has been reported previously.5,7,27,32,33

Absorption Edge. If we now turn to the present example of Cl$_2$−NDI, we see from Figure 3 that the strongest absorption mode appears around 24 400 cm$^{-1}$. It can be associated with the J-aggregate, as it shows a red shift (∼500 cm$^{-1}$, ∼60 meV) with respect to the monomer in solution (depicted by the black solid curve in the lower panel of Figure 3b). Considering the slip angle of the molecules arranged within the β- and α-phases, we attributed this strong absorption feature to the β-phase of Cl$_2$−NDI, as it satisfies the necessary condition of slip angle, that is, Θ < 54.7°.6,9,11

Having assigned the J-band, we can focus on two smaller modes located below the J-band. One is the shoulderlike peak located at 23 400 cm$^{-1}$, whose intensity is suppressed with cooling down. The other one can be found at 22 400 cm$^{-1}$; it appears at low temperatures only. In the lower panel of Figure 3b, polarization-dependent spectra measured along the a- and b-axes at T = 10 and 300 K are displayed. The two modes observed are more pronounced along the b-direction; nevertheless, if we normalize the absorbance by the absorbance spectra measured at 300 K, one can see that both polarizations show the same trend. In fact, this shoulder splits into two separate modes rendering a steplike feature at low temperatures. The origin of this shoulder-peak and its split evades a complete understanding at this point. We suggest that it signals trapped exciton states. In particular, either exciton—phonon coupling induced exciton polaron or disorder driven Lévy states which have been reported previously.5,7,24−30

Lévy States. Another plausible explanation could come from the small changes in molecular structure, which result in a structural variation giving disorder to the system by fluctuating the intermolecular interaction (off-diagonal disorder). Such a disorder could
broaden the distribution of exciton bands, by introducing a heavy-tailed Lévy distribution.5,2,28–30 The Lévy distribution in J-aggregates results in a single outlier state which is much lower energy state than other exciton states, i.e., a Lévy state.5,22 This state can be considered as a trapped exciton state caused by the large energy difference between the Lévy state and rest of the states in exciton bands. Different length scales of the multiple structural domains in the mixed phase will possibly form multiple Lévy states with slightly different energies rendering peaklike features in the absorption spectra. Therefore, in this scenario, the observed two smaller modes could be interpreted as optical excitations to the Lévy states. The structural transition observed in our molecular vibration spectra also supports this idea.

The structural transition could possibly be α-phase transition or a local precursor of it. However, a complete transition to the α-phase is excluded because no H-band appears in our spectra, which should be located near the monomer.9,11 In addition, two molecules in a unit cell in the α-phase should show anisotropic lower and higher H-bands (Davydov components) whereas in our case it is nearly isotropic. Still, we do not exclude the possibility of a phase transition to the α-phase on local length scales. In this case, the two smaller modes could be related to the vibronic side bands of H-band expected in the multimolecule Frenkel polaron picture.4,5 In this picture, strong coupling between the vibrational mode and exciton renders a small first absorption band at lower energies, while most of the spectral weight moves to the higher energy bands in the H-aggregate. However, the local limit of the phase transition to the α-phase should restrict this effect to be small. Our study of Cl$_2$-NDI suggests two scenarios which are exciton polarons and Lévy states of excitons. Clarification of these phenomena still remains to be fulfilled in combination with other experimental techniques. Regardless, our observations reveal the close relation between the structure and excitonic transition in this system.

Birefringence. Our transmission data reveal another interesting optical phenomenon: β-phase single crystalline Cl$_2$-NDI exhibits a pronounced birefringence over a wide frequency range. Figure 4a displays the polarization-dependent transmittance as a function of frequency measured under ambient conditions. The polarization beat is well pronounced over the entire spectra due to a phase shift by the birefringent material.40–43 Calculating the index of refraction for 0° and 90° at 11 000 cm$^{-1}$—assuming no extinction, for simplicity—yields $n_1 = 1.58$ and $n_2 = 2.22$, respectively. The birefringence $\Delta n = 0.64$ is very large considering that the birefringences of usual optical materials are around 0.1–0.3,43–46 where some organic aggregates show values comparable to our Cl$_2$-NDI.43,47 Note that this oscillation is distinct from the outcome of a Fabry–Pérot etalon, which accounts for the internal multireflection of the sample. As a matter of fact, Fabry–Pérot oscillations are also observed as magnified in the inset of Figure 4a. They exhibit a small frequency interval of 150 cm$^{-1}$, which relates to the sample thickness, d, via the simple relation $\Delta \nu = 1/2nd$ in the normal incidence. Using $n = 1.9$ (average of the n_1 and n_2) we obtain $d = 16 \mu$m in good agreement with the thickness of our crystal measured by a microscope (15 μm). For a better illustration, Figure 4b displays a color map of the transmittance as a function of frequency and polarization angle. Two different optical axes can be identified by the two horizontal patterns generated at 45° and 135°, which correspond to the crystal axes a and b, respectively. At these two angles, the spectra show smooth curves without beating, implying that the net phase shift vanishes along these directions. The beat intensity is most strongly pronounced for the orientations 0° and 90° with opposite phases. This inference diminishes as the frequency rises and reaches the excitonic absorption; eventually it is completely screened. The nodes appearing in the transmittance spectra as vertical dashed gray lines are those frequencies at which the incident light turns into circularly polarized light, as the net phase shift becomes $\pm \pi/4$.41 In other words, our Cl$_2$-NDI crystal turns the linearly polarized light into a circularly polarized light at multiple frequency points.

The birefringent material can be utilized as waveplates, which delays the phase for the slow-axis compared to that of fast-axis. The combination of the quarter-waveplate and the linear polarizer can turn the light into circularly polarized light. The common problem of birefringence is the narrow working frequency. Usually, one needs to match the birefringence $\Delta n = n_2 - n_1$ and the thickness, in order to obtain the phase shift $\Delta \phi = 2\pi n d / \lambda = m \pi$ where m is the integer. Since the phase shift also is subject to the wavelength, making a broadband waveplate is challenging. However, our Cl$_2$-NDI sample exhibits multiple nodes where the light becomes circularly polarized over a broadband frequency range, from mid-infrared to visible frequencies, with nearly 90% of transmittance, promoting this system as a prime platform for broadband waveplate applications.
CONCLUSIONS

Comprehensive optical investigations on β-phase Cl2−NDI single crystals have been performed by temperature- and polarization-dependent infrared spectroscopy. A splitting and red shift of several infrared active vibrational modes are detected upon cooling, as well as the splitting of the J-band in two individual modes at low temperatures. We suggest two possible interpretations: (i) A coupling between intermolecular vibrational modes and excitonic features forms self-trapped excitons appearing in Cl2−NDI at low temperatures. (ii) Low-temperature structural disorder introduces a heavy-tailed Lévy distribution in excitonic bands resulting in Lévy states. Our findings demonstrate a close relation between structure and electronic properties. In addition, polarization-dependent transmittance experiments reveal a large birefringence extending over a wide frequency range; this makes Cl2−NDI interesting for applications in various optical devices.

AUTHOR INFORMATION

Corresponding Author
Seulki Roh — I. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany; orcid.org/0000-0003-0424-614X; Email: seulki.roh@ip1.uni-stuttgart.de

Authors
Marko Pinterić — I. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany; Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, SI-2000 Maribor, Slovenia
Ece Uykur — I. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
Nis Hauke Hansen — Experimentelle Physik VI, Universität Würzburg, 97074 Würzburg, Germany
Jens Pfalum — Experimentelle Physik VI, Universität Würzburg, 97074 Würzburg, Germany
Matthias Stolte — Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, 97074 Würzburg, Germany
Frank Würthner — Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, 97074 Würzburg, Germany; orcid.org/0000-0001-7245-0471
Martin Dressel — I. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.0c05165

Author Contributions
1M.P. and S.R. contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank G. Untereiner for technical support and T. Biesner for fruitful discussions. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) via DR228/48-1 (Stuttgart) and PF385/11-1 (Würzburg). E.U. acknowledges the European Social Fund and the Baden-Württemberg Stiftung for the financial support of this research project by the Eliteprogramme. J.P. and F.W. acknowledge the Bavarian State Ministry for Science and the Arts for funding within the collaborative research network “Solar Technologies go Hybrid” (SoLTech).

REFERENCES